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We refer to rooted unordered trees

The vertices have any number of children,
and if a tree A coincides with B by
reshuffling the subtrees rooted at the
children of any of its vertices we have A=B

A/?\ BQ\\ A=B
|



Basic notation

0 denotes the empty tree.
1 denotes the tree containing exactly one vertex.
2 denotes the tree containing exactly two vertices.

Inatree T # 0, r(T) and n; denote the root and the
number of vertices of T, respectively.

The subtrees routed at the children of a vertex x are
called the subtrees of x.



Tree representation as a binary sequence

& o 1 0 2 1 filop
T% 6= 1101010011000

all the prefixes of S+, except for the whole
sequence, have more 1's than O's




Tree enumeration

The trees are grouped into consecutive
families F,, F;, ..., F,, where F; contains
the trees of / vertices.

Two trees obtained from one another by
changing the order of the subtrees of
any vertex appear once in F;.

For two trees U, T with n; < n- we have
Sy < St if the sequences are interpreted
as binary numbers.






0 18 | 110101010100
1 |10 19 | 110101011000
2 | 1100 20 | 110101101000

21 | 110101110000
3 | 110100 22 | 110110011000
4 | 111000 23 | 110110101000

24 | 110110110000
5 | 11010100 25 | 110111010000
6 | 11011000 26 | 110111100000
7 | 11101000 27 | 111001101000
8 | 11110000 28 | 111001110000

29 | 111010101000
9 | 1101010100 | 30 | 111010110000
10 | 1101011000 | 31 | 111011010000
11 | 1101011000 || 32 | 111011100000
12 | 1101011000 | 33 | 111100110000
13 | 1101011000 || 34 | 111101010000
14 | 1101011000 || 35 | 111101100000
15 | 1101011000 | 36 | 111110100000
16 | 1101011000 || 37 | 111111000000
17 | 1111100000




How many trees ?

Doubling Rule. From each tree T in F,_; build two
trees T;, T, in F, by adding a new vertex as the

leftmost child of r(T), or adding a hew root and
appending T to it as a unique subtree.

Let f, be the number of trees in F,;
we immediately have: f, > 22 for n 2.



More strictly:

Proposition 1. f, > 2!n/10-2 for n > 11,
Eg fll > 211, f21 > 222, f31 > 233, .

Proposition 2. f, < 2" for n > 3.

Open problem 1. Express f, exactly as a
function of n.



Proposition 3. A tree T of n vertices can be
transformed in canonical form in time O(n2).

algorithm CF(T,n)

1. forany vertex x € T'
count the number of vertices ny,...n; of its subtrees;
reorder these subtrees for non decreasing values of the n;;
let G, ..., G, be the groups of subtrees with the same number g4,..., g,
of vertices, with all g; > 2;

// reordering is necessary but not sufficient for having 7" in canonical form
// the trees in all G; must be be arranged in canonical order

2. forany x € T, down-top from the vertices closest to the leaves
forany group G; = {T1,...,Ts}
compute the representing sequences S, ..., Ss;
order Si,...,S, for increasing binary value;
permute 77, ...,7Ts accordingly.




The three operators

A/\B/< 1o

add A+i/\ /1>\A+B =B+ A
add-plus Aeoj\ Am‘)&\ /<>\AG>B

mult A~1/\ A.B/m A %
J



T=A+B
The roots r(A) and r(B) are merged.
A+1=-1+A-A
Addition with O is not defined.

T=AoB
A new root r(T) is created, and A and B become subtrees of r(T).
Ae0=00AzA.

T=A+B
B is merged with each vertex of A (the subtrees of r(B) become
hew subtrees of r(A).
A+0=0-A=0(with some abuse of the definition of multiplication
in the second term since O has no vertices).
A«l1=-1.A-A.



Number of vertices

Proposition 4 (Immediate)
T=A+B > nr=n,+ng-1
T=A®B > nr=n,+ng+1
T=A« B> nr=nyng



+ and ©: commutativity and associativity

Proposition 5. For A, B, C 2 O:
A+B=B+A
(A+B)+C=A+(B+C()

Proposition 6.
AeB=-BeA forall AB
(Ao B)e C=Ao® (BeC(C) ifandonlyif A=C



Multiplicity: "product” of a tree A by an integer k > 1

KAzA+A+.., +A k times
kkA=AeAe , . . ® A ktimes

M=kA 2> ny=kn,-k+1
M=k°A 2 n,=kng+k-1

Note: the number of trees obtained as kA or k®A is an

e.g.: "even’ (k = 2) trees of n vertices are

exponentially less than all trees of n vertices



Multiplication: commutativity and associativity

Proposition 7. Associativity:
(A-B)-C=A-(B-C) forall A,B .

Proposition 8. Commutativity 1:
Forn,=ng, A-B=B-A if and only if A=B.

Proposition 9. Commutativity 2:
Forn,>ny, A-B=B-A onlyif
(i) Bis aproper subtree of A
(ii)) ny,/e, = ny/eg , where e,, e; are numbers of leaves of A, B

For n, > ny several other necessary conditions for
commutativity exist. An iff condition has not yet been found.



Commutative product
A-B=B-A
for B subtree of A

Z=A"-B
in canonical form




Power: product of a tree A by itself k> 1 fimes
AK=A.A. . A k times
P=Ak = np=nyk
Note: the number of trees obtained as Ak is an

In the previous slide A = B2, then Z = B3,



Finally multiplication is not distributive over
addition and addition-plus, that is in general:

(A+B)-CzA-C+B-C
(AeB)-CzA-CeB-C



Generating all trees

from the single generator O, using + and @
* the empty tree O is the generator of itself
tree 1 can be generated as0 @ 0
tree 2 can be generatedas 1 ¢ 0

assuming inductively that each of the trees in F,
with 1 <i<n-1can be generated by the trees of
the preceding families, then each tree T in F, can
also be generated . . ...



Both + and ® are needed




Prime trees

Euclid's Elements :
TPOTOG APLTUOS = prime number

the concept is significant under
multiplication

Mocking Euclid:
TPOTOG OEVOPOS = prime tree

the concept is now significant under addition,
addition-plus, and multiplication



Euler (1751) :

" There are misteries that we will be never able to
understand. It is sufficient to take a look at the
distribution of prime numbers “

Gauss (observation when he was a teenager, 1792):
" Primzahlen unter a(=«)a/la"”

Now Prime number theorem, proved independently
by Hadamard and de le Valleé-Poussin (1896)

Riemann hypothesis (1859):
" It would be beautiful to have a rigorous proof of this..."



Consider a tree T with more than one vertex
Definition

T is prime under addition (or add-prime) if can be
generated by addition only if the two ferms are 1 and T.

T is prime under addition-plus (or plus-prime) if cannot be
generated by addition-plus of any pair of trees.

T is prime under multiplication (mult-prime) if can be generated
by multiplication only if the two factors are 1 and T.



Proposition 10. T is add-prime if and only if r(T)
has only one subtree.

Proposition 11. T is plus-prime if and only if r(T)
has more than two subtrees.

Then:

There are infinite add-prime, add-composite,
plus-prime, and plus-composite trees.

The number of add-prime trees of n vertices is f,_;

The number of plus-prime trees of n vertices
depends on the values of all the f;,



Primality testing

From Propositions 10 and 11, deciding if a tree is
add-prime or plus-prime is computationally “easy’
(in fact if the trees are accessed from the root
the decision is taken in constant time).

[

Testing mult-primality is much more difficult.



Proposition 12. If nis a prime number all the trees
with n vertices are mult-prime.

Then mult-primality can be decided with an
integer primality test if nis prime, but the
test is insufficient if n is composite.

Proposition 13. For any tree T we have:

* if r(T) has only one subtree, T is mult-prime;

* if r(T) has two subtrees with n, = n, vertices,
then T is mult-prime;

e if r(T) has two subtrees with n, < n, vertices and
n, + 1 does not divide n,, then T is mult-prime.

Testing these conditions is "easy” but still
insufficient.



Further properties of mult-prime trees have been found.
We restrict our discussion to the following:

Proposition 14. Let T = A-B with A,B 20 and A,B #1,
and let Y be a subtree of r(B) with maximum number
ny of vertices. Then the subtrees of r(B) are exactly
the subtrees of r(T) with at most ny vertices.



Notation. For an arbitrary tree T:

Gi, ..., 6, are the groups of subtrees of r(T) with the
same number gy, . .., g, of vertices, g;<g, < <g,.

H. is the unionof G4, . . ., G;, i.e. each H; is the group
of subtrees of r(T) with up to g; vertices.



Structure of Algorithm MP for deciding if a free T of n
vertices is mult-prime.

algorithm MP (T, n)
1. Ch{iln):
// transform T in canonical form with Algorithm CF
2. let Hi,..., H, be the groups of subtrees of r(T);
3. for1<¢:<r—-1
copy 4 into Z:
traverse Z in preorder
forany vertex x encountered in the traversal
if x has all the subtrees of H; erase these subtrees in 7
else exit from the ¢-th cycle;
return MULT-COMPOSITE;
4. return MULT-PRIME.

A rough analysis shows that MP runs in time O(n*)



If T is mult-composite Algorithm MP allows to find a pair of
factors A, B at no extra cost. This implies that n is factorized
in time polynomial in n, in agreement with the factorization in
ordinary arithmetic that requires time exponential in log n.

Counting the number of mult-prime trees seems
to be very hard:

Open problem 2. For any given n, determine
the number of mult-prime trees of n vertices.
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