An Arithmetic for trees

Fabrizio Luccio

November 2015

Ref: arXiv1510.05512

We refer to rooted unordered trees

The vertices have any number of children, and if a tree A coincides with B by reshuffling the subtrees rooted at the children of any of its vertices we have A=B

Basic notation

- 0 denotes the empty tree.
- I denotes the tree containing exactly one vertex.
- 2 denotes the tree containing exactly two vertices.
- In a tree T ≠ 0, r(T) and n_T denote the root and the number of vertices of T, respectively.
- The subtrees routed at the children of a vertex x are called the subtrees of x.

Tree representation as a binary sequence

$$0 \neq 1 \cdot 10 \quad 2 \quad 1100$$

 $T = \int_{T} S_{T} = 1 \frac{1011010011000}{S_{1}} \frac{1000}{S_{2}} \frac{1000}{S_{3}}$

all the prefixes of S_T , except for the whole sequence, have more 1's than 0's

Tree enumeration

- The trees are grouped into consecutive families F₀, F₁,..., F_i, where F_i contains the trees of *i* vertices.
- Two trees obtained from one another by changing the order of the subtrees of any vertex appear once in F_i.
- For two trees U, T with n_U < n_T we have S_U < S_T if the sequences are interpreted as binary numbers.

The canonical form

n		1	
0		18	110101010100
1	10	19	110101011000
2	1100	20	110101101000
		21	110101110000
3	110100	22	110110011000
4	111000	23	110110101000
		24	110110110000
5	11010100	25	110111010000
6	11011000	26	110111100000
7	11101000	27	111001101000
8	11110000	28	111001110000
		29	111010101000
9	1101010100	30	111010110000
10	1101011000	31	111011010000
11	1101011000	32	111011100000
12	1101011000	33	111100110000
13	1101011000	34	111101010000
14	1101011000	35	111101100000
15	1101011000	36	111110100000
16	1101011000	37	111111000000
17	1111100000		

How many trees?

- **Doubling Rule**. From each tree T in F_{n-1} build two trees T_1 , T_2 in F_n by adding a new vertex as the leftmost child of r(T), or adding a new root and appending T to it as a unique subtree.
- Let f_n be the number of trees in F_n : we immediately have: $f_n \ge 2^{n-2}$ for $n \ge 2$.

More strictly:

Proposition 1. $f_n > 2^{11n/10-2}$ for $n \ge 11$. E.g. $f_{11} > 2^{11}$, $f_{21} > 2^{22}$, $f_{31} > 2^{33}$, ...

Proposition 2. $f_n \le 2^{2n-5}$ for $n \ge 3$.

Open problem 1. Express f_n exactly as a function of n.

Proposition 3. A tree T of n vertices can be transformed in canonical form in time $O(n^2)$.

```
algorithm CF(T, n)
1. for any vertex x \in T
      count the number of vertices n_1, \ldots n_k of its subtrees;
      reorder these subtrees for non decreasing values of the n_i;
      let G_1, \ldots, G_r be the groups of subtrees with the same number g_1, \ldots, g_r
          of vertices, with all g_i > 2;
   // reordering is necessary but not sufficient for having T in canonical form
   // the trees in all G_i must be be arranged in canonical order
2. for any x \in T, down-top from the vertices closest to the leaves
      for any group G_i = \{T_1, \ldots, T_s\}
           compute the representing sequences S_1, \ldots, S_s;
           order S_1, \ldots, S_s for increasing binary value;
           permute T_1, \ldots, T_s accordingly.
```

The three operators

T = A + B

The roots r(A) and r(B) are merged. A + 1 = 1 + A = AAddition with 0 is not defined.

 $T = A \oplus B$

A new root r(T) is created, and A and B become subtrees of r(T). A \oplus **0** = **0** \oplus A \neq A.

 $T = A \cdot B$

B is merged with each vertex of A (the subtrees of r(B) become new subtrees of r(A).

 $A \cdot O = O \cdot A = O$ (with some abuse of the definition of multiplication in the second term since O has no vertices).

 $A \cdot 1 = 1 \cdot A = A$.

Number of vertices

Proposition 4 (Immediate) $T = A + B \Rightarrow n_T = n_A + n_B - 1$ $T = A \oplus B \Rightarrow n_T = n_A + n_B + 1$ $T = A \cdot B \Rightarrow n_T = n_A n_B$ + and \oplus : commutativity and associativity

Proposition 5. For A, B,
$$C \neq 0$$
:
A + B = B + A
(A + B) + C = A + (B + C)

Proposition 6. $A \oplus B = B \oplus A$ for all A, B $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ if and only if A = C

Multiplicity: "product" of a tree A by an integer k > 1

$$kA = A + A + \ldots + A$$
 k times

 $k^{\oplus}A = A \oplus A \oplus \ldots \oplus A$ k times

$$M = kA \rightarrow n_M = kn_A - k + 1$$

$$M = k^{\oplus}A \rightarrow n_{M} = kn_{A} + k - 1$$

Note: the number of trees obtained as kA or $k^{\bullet}A$ is f_{n_A} e.g.: "even" (k = 2) trees of n vertices are exponentially less than all trees of n vertices Multiplication: commutativity and associativity

Proposition 7. Associativity: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ for all A, B, C.

Proposition 8. Commutativity 1: For $n_A = n_B$, $A \cdot B = B \cdot A$ if and only if A=B.

Proposition 9. Commutativity 2: For $n_A > n_B$, $A \cdot B = B \cdot A$ only if (i) B is a proper subtree of A (ii) $n_A/e_A = n_B/e_B$, where e_A , e_B are numbers of leaves of A, B

For $n_A > n_B$ several other necessary conditions for commutativity exist. An iff condition has not yet been found.

Commutative product $A \cdot B = B \cdot A$ for B subtree of A

 $Z = A \cdot B$ in canonical form

Power: product of a tree A by itself k > 1 times

$$A^{k} = A \cdot A \cdot \ldots \cdot A$$
 k times

$$P = A^k \rightarrow n_P = n_A^k$$

Note: the number of trees obtained as A^k is f_{n_A}

In the previous slide $A = B^2$, then $Z = B^3$.

Finally multiplication is not distributive over addition and addition-plus, that is in general:

$$(A + B) \cdot C \neq A \cdot C + B \cdot C$$

 $(A \oplus B) \cdot C \neq A \cdot C \oplus B \cdot C$

Generating all trees

from the single generator $\mathbf{0}$, using + and \oplus

- the empty tree **O** is the generator of itself
- tree 1 can be generated as 0

 0
- tree 2 can be generated as 1

 0
- assuming inductively that each of the trees in F_i with $1 \le i \le n - 1$ can be generated by the trees of the preceding families, then each tree T in F_n can also be generated

= 0 ⊕, T1

Both + and \oplus are needed

Prime trees

Euclid's Elements :

προτος αριτμος = prime number the concept is significant under multiplication

Mocking Euclid:

προτος δενδρος = prime tree

the concept is now significant under addition, addition-plus, and multiplication

Euler (1751) :

" There are misteries that we will be never able to understand. It is sufficient to take a look at the distribution of prime numbers "

Gauss (observation when he was a teenager, 1792): "Primzahlen unter $a (= \infty) a / la$ "

> Now Prime number theorem, proved independently by Hadamard and de le Valleé-Poussin (1896)

Riemann hypothesis (1859):

" It would be beautiful to have a rigorous proof of this"

Consider a tree T with more than one vertex

Definition

T is prime under addition (or add-prime) if can be generated by addition only if the two terms are **1** and T.

T is prime under addition-plus (or plus-prime) if cannot be generated by addition-plus of any pair of trees.

T is prime under multiplication (mult-prime) if can be generated by multiplication only if the two factors are 1 and T.

Proposition 10. T is add-prime if and only if r(T) has only one subtree.

Proposition 11. T is plus-prime if and only if r(T) has more than two subtrees.

Then:

There are infinite add-prime, add-composite, plus-prime, and plus-composite trees.

The number of add-prime trees of n vertices is f_{n-1}

The number of plus-prime trees of n vertices depends on the values of all the $f_{i < n}$

Primality testing

From Propositions 10 and 11, deciding if a tree is add-prime or plus-prime is computationally "easy" (in fact if the trees are accessed from the root the decision is taken in constant time).

Testing mult-primality is much more difficult.

Proposition 12. If n is a prime number all the trees with n vertices are mult-prime.

Then mult-primality can be decided with an integer primality test if n is prime, but the test is insufficient if n is composite.

Proposition 13. For any tree T we have:

- if r(T) has only one subtree, T is mult-prime;
- if r (T) has two subtrees with n₁ = n₂ vertices, then T is mult-prime;
- if r (T) has two subtrees with $n_1 \le n_2$ vertices and $n_1 + 1$ does not divide n_2 , then T is mult-prime.

Testing these conditions is "easy" but still insufficient.

Further properties of mult-prime trees have been found. We restrict our discussion to the following:

Proposition 14. Let $T = A \cdot B$ with $A, B \neq 0$ and $A, B \neq 1$, and let Y be a subtree of r(B) with maximum number n_y of vertices. Then the subtrees of r(B) are exactly the subtrees of r(T) with at most n_y vertices. Notation. For an arbitrary tree T:

 G_1, \ldots, G_r are the groups of subtrees of r(T) with the same number g_1, \ldots, g_r of vertices, $g_1 < g_2 < \cdots < g_r$;

 H_i is the union of G_1, \ldots, G_i , i.e. each H_i is the group of subtrees of r(T) with up to g_i vertices.

Structure of Algorithm MP for deciding if a tree T of n vertices is mult-prime.

```
algorithm MP(T, n)
1. CF(T, n);

// transform T in canonical form with Algorithm CF

2. let H<sub>1</sub>,..., H<sub>r</sub> be the groups of subtrees of r(T);
3. for 1 ≤ i ≤ r - 1

copy T into Z;
traverse Z in preorder
forany vertex x encountered in the traversal
if x has all the subtrees of H<sub>i</sub> erase these subtrees in Z
else exit from the i-th cycle;
return MULT-COMPOSITE;

4. return MULT-PRIME.
```

A rough analysis shows that MP runs in time $O(n^4)$

If T is mult-composite Algorithm MP allows to find a pair of factors A, B at no extra cost. This implies that n is factorized in time polynomial in n, in agreement with the factorization in ordinary arithmetic that requires time exponential in log n.

Counting the number of mult-prime trees seems to be very hard:

Open problem 2. For any given n, determine the number of mult-prime trees of n vertices.

A. Bruno, D. Yasaki. The arithmetic of trees. arXiv: 0809.448v1 [mathCO] (2008).

A. Bruno, D. Yasaki. The arithmetic of trees. Involve 4 (1) (2011) 1-11.

J.L. Loday, A. Frabetti, F. Chapoton, and F. Goichot. Dialgebras and related operands. Lecture Notes in Math. 1763, Springer-Verlag, (2001).

J.L. Loday. Arithmetree. J. Algebra 258 (1) (2002) 275309,

R. Sainudiin. Algebra and Arithmetic of Plane Binary Trees: Theory & Applications of Mapped Regular Pavings. http://www.math.canterbury.ac.nz / r.sainudiin/talks/MRP (2014).