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We refer to rooted unordered trees 
 

The vertices have any number of children, 
and if a tree A coincides with B by 
reshuffling the subtrees rooted at the 
children of any of its vertices we have A=B 
 



Basic notation 

♦  0 denotes the empty tree.  
♦  1 denotes the tree containing exactly one vertex. 
♦  2 denotes the tree containing exactly two vertices. 

♦  In a tree T ≠ 0, r (T) and nT denote the root and the 
number of vertices of T, respectively. 

 
♦  The subtrees routed at the children of a vertex x are 

called the subtrees of x.    



Tree representation as a binary sequence 

all the prefixes of ST, except for the whole 
sequence, have more 1's than 0’s 



Tree enumeration 

♦  The trees are grouped into consecutive 
families F0 , F1 , . . . , Fi , where Fi contains 
the trees of i  vertices. 

 

♦  Two trees obtained from one another by 
changing the order of the subtrees of 
any vertex appear once in Fi . 

♦  For two trees U, T with nU < nT we have 
SU < ST if the sequences are interpreted 
as binary numbers.  



The canonical 
form 





How many trees ? 

♦  Doubling Rule. From each tree T in Fn-1 build two 
trees T1, T2 in Fn by adding a new vertex as the 
leftmost child of r (T), or adding a new root and 
appending T to it as a unique subtree. 

♦  Let fn be the number of trees in Fn: 
          we immediately have: fn ≥ 2n-2 for n ≥ 2. 
 



More strictly: 

Proposition 1. fn > 211n/10-2 for n ≥ 11.      
       E.g.  f11 > 211, f21 > 222,  f31 > 233, . . .  

Proposition 2. fn ≤ 22n−5 for n ≥ 3.  
 
Open problem 1. Express fn exactly as a         
function of n. 
 



Proposition 3. A tree T of n vertices can be 
transformed in canonical form in time O(n2). 



The three operators 

add 
 
add-plus 
 
mult 



T = A + B  
  The roots r(A) and r(B) are merged.  
  A + 1 = 1 + A = A 
  Addition with 0 is not defined. 

T = A ⊕ B      
   A new root r(T) is created, and A and B become subtrees  of r(T). 
   A ⊕ 0 = 0 ⊕ A ≠ A . 

T = A � B  
   B is merged with each vertex of A (the subtrees of r(B) become     
   new subtrees of r(A) . 
   A � 0 = 0 � A = 0 (with some abuse of the definition of multiplication    
   in the second term since 0 has no vertices).   
   A � 1 = 1 � A = A.  



Proposition 4 (Immediate)  
         T = A + B  è nT = nA + nB - 1  
         T = A ⊕ B è nT = nA + nB + 1 
         T = A � B è nT = nAnB  

 
Number of vertices 
 
 



Proposition 5. For A, B, C ≠ 0:  
        A + B = B + A  
        (A + B) + C = A + (B + C) 

 
+  and ⊕ :  commutativity and associativity 
 
 

Proposition 6.  
         A ⊕ B = B ⊕ A  for all A,B  
         (A ⊕ B) ⊕ C =A ⊕ (B ⊕ C)  if and only if A = C  



k A = A + A + . . . + A          k times 

k⊕ A = A ⊕ A ⊕ . . . ⊕ A    k times 

Multiplicity: “product” of a tree A by an integer k > 1 

M = k A   è    nM = k nA –k + 1 

M = k⊕ A  è    nM = k nA + k - 1 

Note: the number of trees obtained as kA or k⊕ A is  f 

e.g. : “even” (k = 2) trees of n vertices are 

exponentially less than all trees of n vertices 

 nA 



Proposition 7.  Associativity :  
     (A · B) · C = A · (B · C)  for all A, B ,C.  
 

 
Multiplication: commutativity and associativity 
 

Proposition 8.  Commutativity 1 : 
     For nA = nB , A · B = B · A  if and only if A=B .  
 Proposition 9.  Commutativity 2 : 
     For nA > nB ,  A · B = B · A  only if  
        (i)   B is a proper subtree of A  
        (ii)  nA/eA = nB/eB , where eA, eB are numbers of leaves of A, B  

For nA > nB  several other necessary conditions for 
commutativity exist. An iff condition has not yet been found.  



Commutative product    
  A · B = B · A   
  for B subtree of A 
 
 
Z = A · B  
      in canonical form  
 



Ak = A � A � . . . � A         k times 

Power: product of a tree A by itself k > 1 times 

P = Ak   è    nP =  nA
k 

Note: the number of trees obtained as Ak is  f nA 

In the previous slide A = B2, then Z = B3. 



Finally multiplication is not distributive over 
addition and addition-plus, that is in general:  

    (A + B) · C ≠ A · C + B · C 
       (A ⊕ B) · C ≠ A · C ⊕ B · C  



Generating all trees 
from the single generator 0,  using  +  and  ⊕   
�  the empty tree 0 is the generator of itself   
�  tree 1 can be generated as 0 ⊕ 0 
�  tree 2 can be generated as 1 ⊕ 0 
�  assuming inductively that each of the trees in Fi 

with 1 ≤ i ≤ n − 1 can be generated by the trees of 
the preceding families, then each tree T in Fn can 
also be generated  . . . . .  



Both  +  and  ⊕  are needed   



Prime trees 
 

Euclid’s Elements :  

 προτος αριτµος = prime number 

 

Mocking Euclid: 
 προτος δενδρος = prime tree              

 

the concept is significant under 
multiplication 

 

the concept is now significant under addition, 
addition-plus, and multiplication 



Euler (1751) :  
“ There are misteries that we will be never able to 
understand. It is sufficient to take a look at the 
distribution of prime numbers ” 

Gauss (observation when he was a teenager, 1792):   
“ Primzahlen unter a ( = ∞) a / la ”  

Now Prime number theorem, proved independently 
by Hadamard and de le Valleé-Poussin (1896) 

Riemann hypothesis (1859):  
“ It would be beautiful to have a rigorous proof of this . . . ” 



Consider a tree T  with more than one vertex 

T is prime under multiplication (mult-prime) if can be generated 
by multiplication only if the two factors are 1 and T. 

T is prime under addition (or add-prime) if can be 
generated by addition only if the two terms are 1 and T. 

T is prime under addition-plus (or plus-prime) if cannot be 
generated by addition-plus of any pair of trees. 

Definition 



Proposition 10.  T  is add-prime if and only if r(T) 
has only one subtree. 

Proposition 11.  T  is plus-prime if and only if r(T) 
has more than two subtrees. 

Then: 

There are infinite add-prime, add-composite, 
plus-prime, and plus-composite trees. 

The number of add-prime trees of n vertices  is fn−1  

The number of plus-prime trees of n vertices 
depends on the values of all the fi < n  



Primality testing 

From Propositions 10 and 11, deciding if a tree is 
add-prime or plus-prime is computationally “easy”  
(in fact if the trees are accessed from the root 
the decision is taken in constant time).  

Testing mult-primality is much more difficult. 



Proposition 12. If n is a prime number all the trees 
with n vertices are mult-prime. 

Proposition 13. For any tree T we have: 
�  if r(T) has only one subtree, T is mult-prime; 
�  if r (T) has two subtrees with n1 = n2 vertices, 

then T is mult-prime;  
�  if r (T) has two subtrees with n1 ≤ n2 vertices and 

n1 + 1 does not divide n2, then T is mult-prime. 

Then mult-primality can be decided with an 
integer primality test if n is prime, but the 
test is insufficient if n is composite. 

Testing these conditions is “easy” but still 
insufficient. 



Further properties of mult-prime trees have been found. 
We restrict our discussion to the following: 

Proposition 14. Let T = A·B with A,B ≠0 and A,B ≠1, 
and let Y be a subtree of r(B) with maximum number 
nY of vertices. Then the subtrees of r(B) are exactly 
the subtrees of r(T) with at most nY vertices. 



Notation. For an arbitrary tree T : 

G1, . . . , Gr are the groups of subtrees of r(T) with the 
same number g1, . . . , gr of vertices, g1 < g2 < ··· < gr ; 

Hi is the union of G1, . . . , Gi, i.e. each Hi is the group 
of subtrees of r(T) with up to gi vertices. 



Structure of Algorithm MP for deciding if a tree T of n 
vertices is mult-prime.  

A rough analysis shows that MP runs in time O(n4) 



If T is mult-composite Algorithm MP allows to find a pair of 
factors A, B at no extra cost. This implies that n is factorized 
in time polynomial in n, in agreement with the factorization in 
ordinary arithmetic that requires time exponential in log n. 

Counting the number of mult-prime trees seems 
to be very hard: 

Open problem 2. For any given n, determine 
the number of mult-prime trees of n vertices. 
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